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Abstract. Physical systems with a finite number of connected states are considered. We 
assume the transition rates between the different states are age dependent. The time 
evolution of the system is described in terms of an age-state probability density. We prove 
the validity of a ger.eral H-theorem, which shows that the age-state probability density 
evolves towards a time-persistent form. We try to extend the result to hybrid systems, 
comprising 'jump' and 'non-jump' stochastic processes. 

1. Formulation of the problem 

The H-theorems have a long history and play an important role in non-equilibrium 
statistical mechanics (see, for instance, Van Kampen 1981, Schnakenberg 1976, Kubo 
1981). 

Here we shall try to derive such a theorem for a class of physical systems with age 
structure (Vlad er a1 1984, Vlad and Popa 1986, 1987, Vlad 1987). Our approach has 
been suggested by several papers dealing with the entropy production due to statistical 
equilibration in heavy-ion collisions (Csernai and Kapusta 1986, Das er a1 1986, Hahn 
and Stocker 1986, Jingshang and Wolschin 1983, Knoll 1987, Remler 1986). 

We consider a system which may exist in a finite number of states i = 1, .  . . , S and 
assume that the transition rates from the state i to other states j , ,  j , ,  . . . depend on 
the age a of the initial state 

(1) W,,At = Wv(a)At j = j ,  , j ,  , . . . . 
Here, by age a we mean the time interval in which the state of the system was i. As 
the age is merely the time elapsed from a given reference point, it seems that the age 
and time are not independent. However, the age depends on a previous random event, 
a transition to state i from other states; thus the age a is in fact a random variable. 

We denote by 

9, = P,(a, t )  P,(~, t )  da = 1 (2)  
I =  I 

the age-state probability density at time t. The time evolution of the system is described 
by means of the balance equations 

B,(a+Ar, r + A r ) A r  = 9,( ,~,  r ) A t  

9 , ( O + A r ,  t + A t ) A t = x  Y,(a')AtP,(a', r )  d a '  
I I,* 
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wherefrom, for A t  + 0, we get the so-called age-dependent master equations ( A D M E )  

(Vlad et a1 1984): 

Together with the boundary condition 

lim P,(a, t )  = 0 
e - r  

and the initial condition 

PP,(a, 0 )  = PP(a) (5') 

the A D M E  system describes the time evolution of the age-state probability density 

For simplicity, we shall assume that all the S states are connected, i.e. for each 
pair of states i a n d j  there is at least one sequence of transitions connecting the two 
states in both directions (Schnakenberg 1976). Our aim is to investigate the asymptotic 
behaviour of the age-state probability density. 

P,(a, t ) .  

2. Steady states 

First we look for a stationary solution of the A D M E  system: 

P, = 9P:'(a) =independent of t. (6) 

P:'(a) = P:'R"(ali) ( 7 )  

Following Vlad and Popa (1986) we shall express P):'(a) as: 

where 

is the stationary-state probability and R"(a1i) d a  is the probability that the age of a 
given state i is between a and a + d a .  

By integrating the A D M E  system we get (see also Vlad and Popa 1986): 

(9) 

where 

is the probability that in the age interval (0, a )  the system remains in the state i. On 
the other hand, P:' obeys a phenomenological master equation 
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where 

@,, =lor W,,(a)R"(ali)  d a  

are age-averaged transition rates. We note that as W,, 2 0 we have $,, 2 0. Similarly 
W,, > 0 implies that @,, > 0. As all S states are connected, it follows that (1 I ) ,  together 
with the normalisation condition C, P:'= 1, determine a unique set of steady-state 
probabilities P:' , .  . . , Pg (see also Schnakenberg 1976), and thus a unique age-state 
probability density F;'(a), i = 1, . . . , S. 

3. The H-theorem 

In order to show that P:t(a) describes the large-time behaviour of P,(a,  t ) ,  we shall 
try to build a function H( t )  obeying the following conditions: 

(a) for P , ( a ,  t) # P;'(a)  H ( t ) > O  (13) 

(b)  for F,(a, t )  = P;t(a) H ( t ) = O  (14) 

(c) for P,(a, t )  # PP:'(a) d H ( t ) /d r  < 0 (15) 

(d )  for P,(a,  t )  = P:t(a) d H ( t ) / d t  = 0. (16) 

We shall assume that H(t)  has the following form: 

Next we shall show that, if 

then H( t )  fulfils the conditions (13)-( 16). 
First we shall prove that the A D M E  system conserves the normalisation condition 

J F,(a, t )  d a =  1 
0 

provided that 

7 low P,(a, 0) d a  = 1. 

Indeed, summing in (3) over i, integrating over a and using (4) and  ( 5 ) ,  we get 

I J o  

wherefrom, taking into account (20), we come to (19). 

non-negati /e 
Similarly, we can show that the time-dependent solution of the A D M E  system is 

Ppl(a, t )  2 0 i =  1 , .  . . , S (22) 
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provided that 

P,(a, 0) 5 0 i = 1, . . . , s. (23) 

Indeed, integrating (3) we obtain 

PI (a, t 1 = h ( t - a 1 9, (0, t - a 1 yI ( a  1 + ( a  - 1 )  PI ( a  - f ,  0) Y ,  ( a  )/ Y ,  ( a  - t (24) 

where h ( t )  is the usual Heaviside function. Inserting (24) into (4) we get a system of 
linear integral equations for P,(O, t ) :  

From (25) we can give a formal series expansion for Pl(O, t ) :  

a- 

q o ,  t )  = x P : ~ ) ( O ,  t )  
q = o  

where Bi9'(0, f )  may be computed recursively from 

j J f  

f r  

We observe that all the functions independent of Pl(O, f )  occuring in (25), (26) and  
(26') are non-negative ( y,(a), y , ( a ) ,  y , (a  - f, 0 ) ,  P/(a - f, 0) 3 0). Thus the solving of 
(25) involves the summation of infinite numbers of non-negative terms, i.e. Pl(O, t )  
and thus PI(a, t )  are non-negative. 

Equations (13) and (14) may be proved starting from the well known relations 

x In x +  1 - x >  0 f o r x > O  x f l  

x In x +  1 -x = 0 for x = 1. 

Indeed, using (19), equation (17) may be rewritten as 

H ( t )  =C [ ~ , ( a ,  t )  In(Pl(a,  t) /B:'(a))+PP:'(a)-Pi(a,  d a  (28) 

wherefrom, taking account of (27), we get (13) and (14). 
Similarly, the proof of (1 5) and (16) is based on the relations 

In x - x +  1 < O  f o r x > O  x Z 1  

I n x - x + l = 0  for x = 1. 

By applying (17) and (19) we have 

f S  
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r m  

Using (4), the relationships (33) and (33') lead to (15) and (16). We have 

= P,(o, t )  -E PI(o, t )  = 0 for Pl(a, t )  # 97t(a) 
I I 

(34) 

i.e. 
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4. Hybrid stochastic processes 

In the following we shall try to generalise the above results to the more general case 
of hybrid processes involving both 'jump' and 'non-jump' phenomena. Such processes 
would be of interest in connection with dissipative nuclear fluid dynamics (Morgenstern 
and  Norenberg 1988), electrodiffusion (Bak 1959, Iordache 1987), the stochastic theory 
of line shape (Kubo 1963, 1969), etc. 

More specifically, we shall assume that the state of the system is described by the 
discrete states index i, by the age a of state i as well as by other continuous state variables 

x = ( X ' ,  x 2 , .  . .). ( 3 5 )  
We shall suppose that between two jumps the evolution of the system is Markovian 
and may be described in terms of a Fokker-Planck equation 

a ,G, (XJX' ;  t )  = L,G(XIX'; t )  (36) 
with the initial condition 

G,(XIX'; O)=S(X-X ' )  (36') 
where G,(XIX'; t )  d X  is the probability that for a discrete state index, i, at time t, the 
continuous variables have values between X u  and X" +dX",  provided that for t = 0 
the continuous state variables had the values X'", (Y = 1,2 , .  . . ; [I, are the Fokker-Planck 
operators corresponding to different labels i = 1 , 2 , .  . . 

L!(. . *)  = -a,"(Kp(x) * . .)+a;~~,P(DpP(X). . .) (37)  
and KP(X)  and Dpp(X)  are drift and  diffusion coefficients. Here and  in the following 
we shall use the summation convention over pairs of two equal Greek indices. 

The conservation of normalisation Ix G,(XIX'; t )  d X  = 1 (38) 

requires that 

Jx d X  U,G, = 0. (39) 

We shall introduce the probability 

a,(,, X, t )  d a  d X  jOm Jx %,(a, X, t )  d a  d X  = 1 (40) 

that at time t the discrete state index is i, the age of state i is between a and a + d a  
and  the continuous variables have values between X" and X " + d X " .  The evolution 
equations (3) and (4) become 

( & + a a - Q 1 ) % ( 4 X ,  t ) = - % , ( a , X ,  t,C W,,(a ,X)  (41) 
J 

with the boundary conditions 

lim Bi(a ,  X ,  t )  = 0 
a+= 

(42) 

(43) 
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and the initial condition 

913,(a, x, t = 0) = 93np(a, X).  (45 1 
Here we assume that the transition rates may depend on the discrete state labels, on 
the age as well as on the continuous state variables. As in the case of pure jump 
processes, we shall suppose that all the possible states ( i ,  X )  are connected, i.e. all the 
points ( i ,  X )  are accessible. 

Looking for a stationary solution of (41) and (42) 

3, = %;‘(a, X )  = independent of t (46) 

we come to (see appendix 1): 

%:‘(a, X )  = lx, gI(X,  alX‘, O)9:t(0, X’) dX’ (47) 

where 

a ( x a l X ’ , a ’ ) = i e x p [ ~ ~  ([l,-c I W,,(a” ,X))da”]  6(X-X’)  (48) 

are Green functions obeying the equations 

a ,g , (x ,  alX’,  a‘) = [I, -1 W,(a,  X )  g I ( x ,  aIX’, a’) (49) 

(50 )  Ce,(X, a‘lX’, a‘)  = 6(X-X’) .  

[ I  I 
Here 7 is the Dyson’s time-ordering operator, the functions %3:‘(0, X )  satisfy the integral 
equations 

%:t(O, X )  = E  j x  I-I,(X’+X)%;t(O, X ’ )  dX’ (51) 
J 

the normalisation condition is 
c 7 lx Sl(X’)%;‘(O, X‘)dX‘= 1 

and the kernels r I , ( X ‘ + X )  and E , ( X )  are given by 

r J X ’ +  X )  = 

E,(X’)  = [ [ YI(X, a / X ’ ,  0) d a  dX. 

W,,(a, X)%,(X, alX‘, 0) d a  J1: 
.r 

o x  

(53) 

(54) 

The time-dependent solution of (41) and (42) may be expressed in a similar way. 
We get (see appendix 1): 

9 ; ( a , X ,  t ) = h ( t - a )  %,(X,alX’,O).%,(O,X’, t - a )  dX‘ I,, 
+ h ( a  - t )  J g,(X, a l x o ,  a - t )%,(a - t, x,,, 0) dX, 

X ’  
(55) 
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where the functions B,(O, X, t )  satisfy the integral equations 
r r  r 

I ( O )  = J, J ai(,, X, 0 )  d a  d X  = 1 
I X 

implies the validity of the normalisation condition 

I (  t ) = lor 93, (a ,  X, t )  da d X  = 1 
I 

(57) 

for any time. Indeed, integrating (41) over a ,  X, performing a partial integration with 
respect to X in which the boundary terms vanish, and taking into account (42), we 
come to 

a, I %',(a, X, t )  d a  d X  = 0 (59) 
I J O  

i.e. 
I ( t )  = I ( 0 )  = 1. (60) 

Unfortunately, in this case the uniqueness of 3;' and the positivity of 93:' and 9Ii 
cannot be proved in a simple way. Only in a particular case we can give a partial 
proof of these assertions (see appendix 2). 

5. A generalised H-function 

Assuming that the uniqueness of 93:' and the positivity of 93:' and BI are physically 
plausible, we shall try to show that the expression 

H ( t )  = jOm j x  %(a ,  X, t )  ln[B,(a,  X, f) /%'(a,  XI1 d a  d X  (61) 

fulfils the requirements of an H-function. 
First the proof of the conditions 

H ( t ) > O  
H ( t ) = O  

for %,(a,  X, t )  z B:t(a, X )  
for B 1 ( a ,  X, t )  = %:'(a, X )  

is straightforward and is based on the relationships (27), (58) and (61). 
The proof of 

H ( t ) < O  for ?$,(a, X, t )  z %':'(a, X )  (64) 
H ( t ) = O  for %',(a, X, t )  = %':'(a, X )  (65) 

is more difficult. To prove these conditions we shall assume the validity of the following 
restrictions: 

(a) the matrix of the diffusion coefficients ~ ~ D Y p ( X ) ~ ~  is positive definite, i.e. 

(b) 

Y,YpDpP(X) > 0 
lim 9Il(a, X, t)/%:'(a, X )  =finite. 

V Yo,  Yp # 0 and real (66) 
(67) 

G - X  
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We note that (66) is commonly used in Markovian dynamics (Lebowitz and Bergmann 
1957, Graham 1978, Risken 1984). On the other hand, (67) is similar to (18). 

The proof proceeds in many steps. First, combining (41), (58) and (61), we get 

[LiBi(a, X, t ) ]  ln[?di(a, X, t)/%3:'(a, X)]  d a  d X  = ? J o  J x  

{ d , % i ( a ,  X, t ) - [B3 , (a ,  X, t) /B; '(a, X)]a,B3qt(a, X)} d a  d X  + ? J o  J, 
m 

Bi(O, X, t )  ln[Bi(O, X, t)/B?'(O, X ) ]  d X + c  Bi(a, X, r ) l  d X  
I 0 
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rx r 

We observe that (74) is similar to (33). By applying the method presented in 5 3 
it is easy to show that 

H , ( t ) < O  

H , ( t ) = O  

for 9 , ( a ,  X, t )  # B:t(a, X )  

for 9 , ( a ,  X, t )  = %:'(a, X).  
(77) 

(78) 
Thus the proof of (64) and (65) may be reduced to the proof of 

fi,( t )  + f i 3 (  t )  < 0 
fi,(t) + fi,(t) = 0 

for B,(a, X, t )  z %':'(a, X )  

for B,(a, X, t )  = %:'(a, X).  
(79) 

(80) 
Performing in (75) a partial integration with respect to X and taking into account 

The term f i i , ( t )  may be expressed in a similar way: 
r x  r 

x { d X u  1n[Bi(a,  X, t)/933:'(a, X)]} d a  dX. 
Combining (66) and (83) we get the relationships (79) and (80). 
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6. Discussion 

The A D M E  formalism has been introduced in order to describe the memory effects. 
Gartner (1989), Vlad (1987) and  Vlad and Pop (1989) proved that the A D M E  formalism 
is related to the continuous-time random walks theory (CTRW) (Montroll and West 
1979), as well as to the generalised master equation ( G M E )  (Montroll and  West 1979). 
Unfortunately, within the framework of the CTRW or G M E  theories the H-theorem 
cannot accomodate arbitrary waiting-time distribution functions (Rajagopal et a1 1983). 
The A D M E  formalism may be used to circumvent this difficulty. The success of our 
approach is due to the fact that we have considered the age of a state as an  additional 
random variable. 

To outline the particularities of our method we mention that within the framework 
of CTRW or G M E  theories we are tempted to build the H-function in terms of the state 
probability PI( t ) :  

or  in terms of the state probability density B,(X, t ) :  

where 

B;'(X) = %;'(a, X) d a .  (86) jo= B , ( X ,  t )  = %,(a, X ,  t )  d a  i: 
We note that H * ( t )  and  H**( t )  are different from the H-functions defined by (17) 
and  (61). 
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Appendix 1 

For steady states, (41) and  (42) become 

(a, - L , ) 9 y ( a ,  X )  = -%;'(a, X )  z W,(a ,  X )  

933:'(0, X )  = E  y,(a, X)%;'(a,  X )  d a .  (A1.2) 

Taking (48)-(50) into account, the integration of ( A l . l )  leads to (47). Inserting (47) 
into (A1.2) we get the integral equations (51). Combining (47) with the normalisation 
condition 

(Al . l )  
I 

cc 

J O  

gives (52). 

(A1.3) 
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Integrating (41) along the characteristics and using (48)-(50), we get (55). Substitut- 
ing ( 5 5 )  into (42) we come to (56). 

Appendix 2 

The transition rates W,,(a, X )  may be expressed in the following form: 

WE,(% X )  =a,(,, X )  T,(a, X )  (A2.1) 

where R , ( a , X )  is the overall transition rate from state ( i ,  X )  to other states, and 
TJ, (a ,  X),  T,?(a, X),  . . . are the transition probabilities from the state ( i ,  X )  to the 
states G I ,  X) ,  ( j 2 ,  X ) ,  . . . for a given age a:  

/ \ -1 

(A2.2) 

(A2.3) 

We shall consider a particular case 

RI = R , ( a )  = independent of X. (A2.4) 

In this case [I, and E, W, commute 

o_,n, = R,[I, (A2.5) 

and thus the Green function gt(X, a l X ’ ,  a‘) can be expressed in terms of G,(X/X’; t ) :  

(A2.6) %(X, alx’, a’) = G,(XIX’; a - a ’ ) ~ , ( a ) / ~ , ( f i ’ )  

where 

y i ( a )  = exp( - 1; Rj(a”)  da”)  (A2.7) 

is the probability that in the age interval ( 0 , a )  the discrete state index was i. As Gi 
and yi are probabilities it follows that they are non-negative. From (A2.6) it turns out 
that the same is true for $3, : 

%j(X, aIX’, a’) 3 0. (A2.8) 

Equation (A2.8) allows one to apply the method used in D 3 for proving that 93,(a, X ,  t )  
is non-negative. 
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